Means, Variances, and Correlations of Latent Variables
latentmeasures.Rd
The means and variances of latent variables and the correlations among the latent variables. In gesca 1.0, the individual scores of latent variables are calculated based on Fornell's (1992) approach.
Arguments
- object
An object of class. This can be created via the
gesca.run
function.
References
Fornell, C. (1992). A national customer satisfaction barometer, the Swedish experience. Journal of Marketing, 56, 6-21.
Hwang, H., & Takane, Y. (2014). Generalized structured component analysis: A Component-Based Approach to Structural Equation Modeling (p.26). Boca Raton, FL: Chapman & Hall/CRC Press.
Examples
if (FALSE) {
library(gesca)
data(gesca.rick2) # Organizational identification example of Bagozzi
# Model specification
myModel <- "
# Measurement model
OP =~ cei1 + cei2 + cei3
OI =~ ma1 + ma2 + ma3
AC_J =~ orgcmt1 + orgcmt2 + orgcmt3
AC_L =~ orgcmt5 + orgcmt6 + orgcmt8
# Structural model
OI ~ OP
AC_J ~ OI
AC_L ~ OI
"
# Run a multiple-group GSCA with the grouping variable gender:
GSCA.group <- gesca.run(myModel, gesca.rick2, group.name = "gender", nbt=50)
latentmeasures(GSCA.group)
}